Orange clownfish

(Amphiprion percula)


The orange clownfish (Amphiprion percula) is widely known as a popular aquarium fish. Like other clownfishes (also known as anemonefishes), it often lives in association with sea anemones. A. percula is associated specifically with Heteractis magnifica and Stichodactyla gigantea, and as larva use chemical cues released from the anemones to identify and locate the appropriate host species to use them for shelter and protection. This causes preferential selection when finding their anemone host species. Although popular, maintaining this species in captivity is rather complex. The Great Barrier Reef Marine Park Authority regulates the number of collection permits that are issued to aquarium fish dealers who seek this, and other tropical fish within the Great Barrier Reef Marine Park. The symbiosis between anemonefish and anemones depends on the presence of the fish drawing other fish to the anemone, where they are stung by its venomous tentacles. The anemone helps the fish by giving it protection from predators, which include brittle stars, wrasses, and other damselfish, and the fish helps the anemone by feeding it, increasing oxygenation, and removing waste material from the host. Various hypotheses exist about the fish’s ability to live within the anemone without being harmed. One study carried out at Marineland of the Pacific by Dr. Demorest Davenport and Dr. Kenneth Noris in 1958 revealed that the mucus secreted by the anemone fish prevented the anemone from discharging its lethal stinging nematocysts. A second hypothesis is that A. percula has acquired immunity towards the sea anemone’s toxins, and it has been shown experimentally to be a combination of the two. The fish feeds on algae, zooplankton, worms, and small crustaceans.

Amphiron percula can grow to be 11 centimeters (4.3 in) in length, but is on average 8 centimeters (3.1 in), and can be recognized by three white lines across their bright orange bodies, with no distinction in color between sexes. The anterior white bar is placed just behind the eye; the middle bar goes straight down the middle of the fish; and the posterior bar occurs near the caudal fin. An anterior projecting bulge also exists on the middle bar. In addition to the white coloring, black edging outlines each fin with varying thickness. This species can be mistaken for the similar species of clownfishes, A. ocellaris. This is known as the ocellaris clownfish and sometimes referred to as the “false percula clownfish” or “common clownfish” due to its similar color and pattern. The “easiest” way to distinguish the two species is the fact that A. percula has 10 spines in the first dorsal fin and A. ocellaris has 11, which is a more reliable distinction than color patterns. The A. ocellaris does not have thick black edging outlining the fins.

Since these fish live in a warm water environment they can reproduce all year long. Each group of fish consists of a breeding pair and 0–4 non-breeders. Within each group there is a size-based hierarchy: the female is largest, the breeding male is second largest, and the male non-breeders get progressively smaller as the hierarchy descends. They exhibit protandry, meaning each fish is born male, but will only change to female if the sole breeding female dies. If the female dies, the breeding male changes sex, becomes the breeding female and the largest non-breeder becomes the breeding male. The spawning process is correlated with the lunar cycle. At night time the moon maintains a higher level of alertness in A. percula and this increases the interaction with the males and females. Before spawning, the male attracts the female via courting behaviour. These courting actions include extending their fins, biting the female and chasing her. The males also swim rapidly in an upward and downward motion to attract the females. The nest site is also important for the survival of the eggs. Depending on the size of the female spawn about 400–1500 eggs per cycle. The expected tenure of breeding females is approximately 12 years and is relatively long for a fish of its size, but is characteristic of other reef fish.

Anemonefish are specialized coral reef fish that live within host anemones and are found in warmer waters in the Pacific Ocean, Indian Ocean, off northwest Australia, southeast Asia and Japan. Both A. percula and the anemones reside in shallow waters and the depth usually does not exceed twelve meters with water temperatures ranging between 25–28 degrees C. Host anemones, which are tube-like organisms that reside on coral reefs, are usually occupied by only one anemonefish species because one species will out-compete and exclude other species when they inhabit the same host anemone. Unless there was a significant size difference, two anemonefish species will show aggression towards each other when trying to occupy the same host anemone. This is why the supply of nearby anemone hosts so strongly influences A. percula’s ability to achieve recruitment and survival in general. A primary host anemone is where an anemonefish is found at a high frequency and a secondary host anemone is where an anemonefish is found at a relatively low frequency. The distribution and availability of sea anemones is limited by the activity of photosynthesis of algae that occupy the anemones’ tentacles. Secondary hosts are usually only used if there is a severe lack of available primary hosts. When many different species of anemonefishes occupy similar habitats, they tend to spread themselves out according to smaller microhabitats and available species of anemones. A. percula and A. perideraion both essentially live within the H. magnifica anemone but A. percula has the highest selection ratios with the S. gigantea. A study done by Elliot & Mariscal in the region of Madang, Papua New Guinea found that all of the H. magnifica anemones that were censused were occupied by A. percula and A. perideraion. A. percula generally occupies anemones that are near shore while A. perideraion occupies anemones that are more offshore. Anemonefish will not occupy anemones if they are in shallow water or if they are too small. Shallow waters are an inhabitable environment for A. percula because of the lower salinity levels, increased temperatures and exposure during low tides. Also, small anemones would not provide protection from predators. A. percula and the host anemone are very important to one another and interact in a symbiotic relationship. A. percula cleans the host anemone by consuming algae residue and zooplankton such as copepods and larval tunicates. They also protect the anemone from polyp consuming fish and other predators, while the clown fish is protected from predators by the anemone. A. percula will sometimes carry pieces of food to the host anemone for later consumption. In most cases the host anemone then devours the food that A. percula stored around it. Chances of survival for both parties involved are increased through this co-existence.

The development of A. percula is relatively fast. After the eggs are fertilized, they are ready to hatch after about six to seven days. After hatching, the larval are very small and are transparent except for the eyes, yolk sac, and a few colors across the body. The larva then sinks to the benthic environment but then swims to the upper water column. The larva spends about a week floating among plankton and is transported by ocean currents. The larval stage ends when A. percula settles to the bottom of the ocean. The process from larval stages to juvenile takes approximately one day. There is a rapid development of color during A. percula’s juvenile stage. During the juvenile stage the anemonefish has to find a suitable anemone host. Specific chemical components are used when finding their host. These chemical cues are different for each anemonefish. This causes preferential selection when finding their anemone host species. When A. percula comes in contact with the anemone it produces a protective mucous coat. This mucous coat is developed with multiple interactions with the host anemone. A. perculas dances around the anemone, touching its fins first to the tentacles and then its entire body during its first interaction with the anemone. This process could take a few minutes or up to several hours. If A. percula does not continue to come in contact with the host anemone the protective mucous covering may disappear. A. percula belongs to a group of fishes that are not stung by the nematocysts of the anemone. If A. percula did not have the protective mucous covering, they would be stung. Other fish species that lack the mucous covering are consumed by the anemone.

Back to Top